
Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - UART 12 - 1

UART

Introduction

This chapter will introduce you to the capabilities of the Universal Asynchronous
Receiver/Transmitter (UART). The lab uses the LaunchPad board and the Stellaris Virtual Serial
Port running over the debug USB port.

Agenda

Introduction to ARM® Cortex™-M4F and Peripherals

Code Composer Studio

Introduction to StellarisWare,
Initialization and GPIO

Interrupts and the Timers

ADC12

Hibernation Module

USB

Memory

Floating-Point

BoosterPacks and grLib

Synchronous Serial Interface

UART

µDMA

Features...

UART Features and Block Diagram

12 - 2 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - UART

Chapter Topics

UART .. 12-1

UART Features and Block Diagram .. 12-3

Basic Operation ... 12-4

UART Interrupts and FIFOs .. 12-5

UART “stdio” Functions and Other Features .. 12-6

Lab 12 ... 12-7
Objective ... 12-7

 UART Features and Block Diagram

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - UART 12 - 3

UART Features and Block Diagram

UART Features

 Separate 16x8 bit transmit and receive FIFOs

 Programmable baud rate generator

 Auto generation and stripping of start, stop, and

parity bits

 Line break generation and detection

 Programmable serial interface

 5, 6, 7, or 8 data bits

 even, odd, stick, or no parity bits

 1 or 2 stop bits

 baud rate generation, from DC to processor clock/16

 Modem control/flow control

 IrDA and EIA-495 9-bit protocols

 µDMA support

Block Diagram...

Block Diagram

Basic Operation...

Basic Operation

12 - 4 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - UART

Basic Operation

Basic Operation

 Initialize the UART
 Enable the UART peripheral, e.g.

SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);

SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);

 Set the Rx/Tx pins as UART pins
GPIOPinConfigure(GPIO_PA0_U0RX);

GPIOPinConfigure(GPIO_PA1_U0TX);

GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);

 Configure the UART baud rate, data configuration
ROM_UARTConfigSetExpClk(UART0_BASE, ROM_SysCtlClockGet(), 115200,

UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE |

UART_CONFIG_PAR_NONE));

 Configure other UART features (e.g. interrupts, FIFO)

 Send/receive a character
 Single register used for transmit/receive

 Blocking/non-blocking functions in driverlib:
UARTCharPut(UART0_BASE, ‘a’);

newchar = UARTCharGet(UART0_BASE);

UARTCharPutNonBlocking(UART0_BASE, ‘a’);

newchar = UARTCharGetNonBlocking(UART0_BASE);

Interrupts...

 UART Interrupts and FIFOs

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - UART 12 - 5

UART Interrupts and FIFOs

UART Interrupts

Single interrupt per module, cleared automatically

Interrupt conditions:

 Overrun error

 Break error

 Parity error

 Framing error

 Receive timeout – when FIFO is not empty and no further data is

received over a 32-bit period

 Transmit – generated when no data present (if FIFO enabled, see next

slide)

 Receive – generated when character is received (if FIFO enabled, see

next slide)

Interrupts on these conditions can be enabled individually

Your handler code must check to determine the source

of the UART interrupt and clear the flag(s)

FIFOs...

Using the UART FIFOs

 Both FIFOs are accessed via the

UART Data register (UARTDR)

 After reset, the FIFOs are enabled*,

you can disable by resetting the FEN

bit in UARTLCRH, e.g.
UARTFIFODisable(UART0_BASE);

 Trigger points for FIFO interrupts can

be set at 1/8, 1/4, 1/2,3/4, 7/8 full, e.g.
UARTFIFOLevelSet(UART0_BASE,

UART_FIFO_TX4_8,

UART_FIFO_RX4_8);

Transmit
FIFO

UART_FIFO_TX4_8

UART_FIFO_TX1_8

UART_FIFO_TX2_8

UART_FIFO_TX6_8

UART_FIFO_TX7_8

FIFO Level
Select

* Note: the datasheet says FIFOs are disabled at reset

stdio Functions...

UART “stdio” Functions and Other Features

12 - 6 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - UART

UART “stdio” Functions and Other Features

UART “stdio” Functions

 StellarisWare “utils” folder contains functions for C

stdio console functions:
c:\StellarisWare\utils\uartstdio.h

c:\StellarisWare\utils\uartstdio.c

 Usage example:
UARTStdioInit(0); //use UART0, 115200

UARTprintf(“Enter text: “);

 See uartstdio.h for other functions

 Notes:

 Use the provided interrupt handler UARTStdioIntHandler()

code in uartstdio.c

 Buffering is provided if you define UART_BUFFERED

symbol

Receive buffer is 128 bytes

Transmit buffer is 1024 bytes

Other UART Features...

Other UART Features

 Modem control/flow control

 IrDA serial IR (SIR) encoder/decoder

 External infrared transceiver required

 Supports half-duplex serial SIR interface

 Minimum of 10-ms delay required between transmit/receive, provided by software

 ISA 7816 smartcard support

 UnTX signal used as a bit clock

 UnRx signal is half-duplex communication line

 GPIO pin used for smartcard reset, other signals provided by your system design

 LIN (Local Interconnect Network) support: master or slave

 µDMA support

 Single or burst transfers support

 UART interrupt handler handles DMA completion interrupt

 EIA-495 9-bit operation

 Multi-drop configuration: one master, multiple slaves

 Provides “address” bit (in place of parity bit)

 Slaves only respond to their address

Lab...

 Lab 12

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - UART 12 - 7

Lab 12

Objective

In this lab you will use the LaunchPad board, and the virtual serial port that runs over the debug
USB cable.

 Initialize UART and echo
characters using polling

 Use interrupts

 Use stdio utility, e.g. UARTprintf()

Lab 12: UART

USB Emulation Connection

Lab 12

12 - 8 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - UART

Procedure

Import Lab12

1. We have already created the Lab12 project for you with a main.c file, a startup file, and all

the necessary project and build options set. Maximize Code Composer and click Project
Import Existing CCS Eclipse Project. Make the settings shown below and click Finish. Make
sure that the “Copy projects into workspace” checkbox is unchecked.

2. Expand the project by clicking on the + or next to Lab12 in the Project Explorer pane.
Double-click on main.c to open it for review. The code looks like the next page:

 Lab 12

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - UART 12 - 9

#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/gpio.h"
#include "driverlib/pin_map.h"
#include "driverlib/sysctl.h"
#include "driverlib/uart.h"

int main(void) {

 SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN | SYSCTL_XTAL_16MHZ);

 SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);

 GPIOPinConfigure(GPIO_PA0_U0RX);
 GPIOPinConfigure(GPIO_PA1_U0TX);
 GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);

 UARTConfigSetExpClk(UART0_BASE, SysCtlClockGet(), 115200,
 (UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE | UART_CONFIG_PAR_NONE));

 UARTCharPut(UART0_BASE, 'E');
 UARTCharPut(UART0_BASE, 'n');
 UARTCharPut(UART0_BASE, 't');
 UARTCharPut(UART0_BASE, 'e');
 UARTCharPut(UART0_BASE, 'r');
 UARTCharPut(UART0_BASE, ' ');
 UARTCharPut(UART0_BASE, 'T');
 UARTCharPut(UART0_BASE, 'e');
 UARTCharPut(UART0_BASE, 'x');
 UARTCharPut(UART0_BASE, 't');
 UARTCharPut(UART0_BASE, ':');
 UARTCharPut(UART0_BASE, ' ');

 while (1)
 {
 if (UARTCharsAvail(UART0_BASE)) UARTCharPut(UART0_BASE, UARTCharGet(UART0_BASE));
 }

}

3. In main(), notice the initialization sequence for using the UART:

 Set up the system clock

 Enable the UART0 and GPIOA peripherals (the UART pins are on GPIO Port A)

 Configure the pins for the receiver and transmitter using GPIOPinConfigure

 Initialize the parameters for the UART: 115200, 8-1-N

 Use simple “UARTCharPut()” calls to create a prompt.

 An infinite loop. In this loop, if there is a character in the receiver, it is read, and then

written to the transmitter. This echos what you type in the terminal window.

Build, Download, and Run the UART Example Code

4. Click the Debug button to build and download your program to the LM4F120H5QR memory.

5. We can communicate with the board through the UART. The UART is connected as a virtual
serial port through the emulator USB connection. You can find the COM port number for this
serial port back in chapter one of this workbook on page 18 or 19.

Lab 12

12 - 10 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - UART

6. In WinXP, open HyperTerminal by clicking Start Run…, then type hypertrm in the Open:

box and click OK. Pick any name you like for your connection and click OK. In the next dialog
box, change the Connect using: selection to COM##, where ## is the COM port number you
noted earlier from Device Manager. Click OK. Make the selections shown below and click
OK.

 When the terminal window opens click the Resume button in CCS, then type some
characters and you should see the characters echoed into the terminal window. Skip to step
8.

7. In Win7, double-click on putty.exe. Make the settings shown below and then click Open.

Your COM port number will be the one you noted earlier in chapter one.

 When the terminal window opens click the Resume button in CCS, then type some
characters and you should see the characters echoed into the terminal window.

 Lab 12

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - UART 12 - 11

Using UART Interrupts

Instead of continually polling for characters, we’ll make some modifications to our code to allow
the use of interrupts to receive and transmit characters. In the first part of this lab, the only
indication we had that our code was running was to open the terminal window to type characters
and see them echoed back. In this part of the lab, we’ll add a visual indicator to show that we
received and transmitted a character. So we’ll need to add code similar to previous labs to blink
the LED inside the interrupt handler.

8. First, let’s add the code in main() to enable the UART interrupts we want to handle. Click on

the Terminate button to return to the CCS Edit perspective. We need to add two additional
header files at the top of the file:

#include "inc/hw_ints.h"
#include "driverlib/interrupt.h"

9. Now we need to add the code to enable processor interrupts, then enable the UART
interrupt, and then select which individual UART interrupts to enable. We will select receiver
interrupts (RX) and receiver timeout interrupts (RT). The receiver interrupt is generated when
a single character has been received (when FIFO is disabled) or when the specified FIFO
level has been reached (when FIFO is enabled). The receiver timeout interrupt is generated
when a character has been received, and a second character has not been received within a
32-bit period. Add the following code just below the UARTConfigSetExpClk() function call:

IntMasterEnable();
IntEnable(INT_UART0);
UARTIntEnable(UART0_BASE, UART_INT_RX | UART_INT_RT);

10. We also need to initialize the GPIO peripheral and pin for the LED. Just before the function
UARTConfigSetExpClk() is called, add these two lines:

SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_2);

11. Finally, we can create an empty while(1) loop at the end of main by commenting out the

line of code that’s already there:

while (1)
{

// if (UARTCharsAvail(UART0_BASE)) UARTCharPut(UART0_BASE,UARTCharGet(UART0_BASE));
 }

12. Save the changes you made to main.c (but leave it open for making additional edits).

Lab 12

12 - 12 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - UART

13. Now we need to write the UART interrupt handler. The interrupt handler needs to read the
UART interrupt status register to know which specific interrupt event(s) just occurred. This
value is then used to clear the interrupt status bits (we only enabled RX and RT interrupts, so
those are the only possible sources for the interrupt). The next step is to receive and transmit
all the characters that have been received. After each character is “echoed” to the terminal,
the LED is blinked for about 1 millisecond. Insert this code below the include statements and
above main():

void UARTIntHandler(void)
{
 unsigned long ulStatus;

 ulStatus = UARTIntStatus(UART0_BASE, true); //get interrupt status

 UARTIntClear(UART0_BASE, ulStatus); //clear the asserted interrupts

 while(UARTCharsAvail(UART0_BASE)) //loop while there are chars
 {
 UARTCharPutNonBlocking(UART0_BASE, UARTCharGetNonBlocking(UART0_BASE));
 //echo character
 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, GPIO_PIN_2); //blink LED
 SysCtlDelay(SysCtlClockGet() / (1000 * 3)); //delay ~1 msec
 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, 0); //turn off LED
 }
}

14. We’re almost done. We’ve added all the code we need. The final step is to insert the address
of the UART interrupt handler into the interrupt vector table. To do this, open up the

startup_ccs.c file. Just below the prototype for _c_int00(void), add the UART interrupt

handler prototype:

extern void UARTIntHandler(void);

15. On about line 68, you’ll find the interrupt vector table entry for “UART0 Rx and Tx”. It’s just
below the entry for “GPIO Port E”. The default interrupt handler is named
IntDefaultHandler. All we need to do is replace this name with UARTIntHandler so the

line looks like:

UARTIntHandler, // UART0 Rx and Tx

 Lab 12

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - UART 12 - 13

16. Save your work. Your main.c code should look like this.

#include "inc/hw_ints.h"
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/gpio.h"
#include "driverlib/interrupt.h"
#include "driverlib/pin_map.h"
#include "driverlib/sysctl.h"
#include "driverlib/uart.h"

void UARTIntHandler(void)
{
 unsigned long ulStatus;

 ulStatus = UARTIntStatus(UART0_BASE, true); //get interrupt status

 UARTIntClear(UART0_BASE, ulStatus); //clear the asserted interrupts

 while(UARTCharsAvail(UART0_BASE)) //loop while there are chars
 {
 UARTCharPutNonBlocking(UART0_BASE, UARTCharGetNonBlocking(UART0_BASE)); //echo character
 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, GPIO_PIN_2); //blink LED
 SysCtlDelay(SysCtlClockGet() / (1000 * 3)); //delay ~1 msec
 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, 0); //turn off LED
 }
}

int main(void) {

 SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN | SYSCTL_XTAL_16MHZ);

 SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);

 GPIOPinConfigure(GPIO_PA0_U0RX);
 GPIOPinConfigure(GPIO_PA1_U0TX);
 GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);

 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF); //enable GPIO port for LED
 GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_2); //enable pin for LED PF2

 UARTConfigSetExpClk(UART0_BASE, SysCtlClockGet(), 115200,
 (UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE | UART_CONFIG_PAR_NONE));

 IntMasterEnable(); //enable processor interrupts
 IntEnable(INT_UART0); //enable the UART interrupt
 UARTIntEnable(UART0_BASE, UART_INT_RX | UART_INT_RT); //only enable RX and TX interrupts

 UARTCharPut(UART0_BASE, 'E');
 UARTCharPut(UART0_BASE, 'n');
 UARTCharPut(UART0_BASE, 't');
 UARTCharPut(UART0_BASE, 'e');
 UARTCharPut(UART0_BASE, 'r');
 UARTCharPut(UART0_BASE, ' ');
 UARTCharPut(UART0_BASE, 'T');
 UARTCharPut(UART0_BASE, 'e');
 UARTCharPut(UART0_BASE, 'x');
 UARTCharPut(UART0_BASE, 't');
 UARTCharPut(UART0_BASE, ':');
 UARTCharPut(UART0_BASE, ' ');

 while (1) //let interrupt handler do the UART echo function
 {
// if (UARTCharsAvail(UART0_BASE)) UARTCharPut(UART0_BASE, UARTCharGet(UART0_BASE));
 }
}

Lab 12

12 - 14 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - UART

17. Click the Debug button to build and download your program to the LM4F120H5QR memory.

18. If you’ve closed it, open Hyperterminal or puTTY, and configure it as before.

19. Click the Resume button. Type some characters and you should see the characters echoed
into the terminal window. Note the LED.

 Lab 12

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - UART 12 - 15

Add Formatting, Enable FIFOs, use UARTprintf

20. In these final steps, we’ll add some formatting to make our terminal window a little better
behaved. When a “CR” carriage return character is received (Enter key), we can detect that
and also echo a “LF” line feed character. CR is character 13 decimal, LF is 10 decimal. To do
this we can’t simply echo the character in the interrupt handler. We need to read the
character into a variable, echo it, then test to see if it was “CR” and issue the “LF”. Click the

Terminate button to return to the CCS Edit perspective. In main.c , look in the

UARTIntHandler, and replace the single line that calls UARTCharPutNonBlocking()

with these lines of code:

received_character = UARTCharGet(UART0_BASE);
UARTCharPutNonBlocking(UART0_BASE, received_character); //echo character
if (received_character == 13) UARTCharPutNonBlocking(UART0_BASE, 10);

21. The variable received_character must be defined as well. Just below the variable

declaration for ulStatus, insert this line:

unsigned char received_character;

22. To enable the FIFOs, add these lines in main() just after the call to

UARTConfigSetExpClk():

UARTFIFOLevelSet(UART0_BASE, UART_FIFO_TX4_8, UART_FIFO_RX4_8); // FIFO 8 chars
UARTFIFOEnable(UART0_BASE); //enable FIFOs

23. The final step is to experiment with UARTprintf(). There are some stdio console functions

defined in the StellarisWare /utils folder. To create the “Enter Text: ” prompt we can use a

simple function call to UARTprintf(). We can also clean up the formatting within the

terminal window using ANSI escape sequences. We’ll use two of these, one to erase the
screen, the other to return the cursor to the (0,0) upper left corner of the screen. For more
information on ANSI escape sequences, go to http://ascii-table.com/. We need a header file,
so add the following line:

#include "utils/uartstdio.h"

24. We can replace the simple prompt created in the previous code. Remove all 12 calls to

UARTCharPut(). Then add these two lines of code in their place:

UARTStdioInit(0); //tells uartstdio functions to use UART0
UARTprintf("\033[2J\033[HEnter Text: "); //erase screen, cursor at (0,0)

Note: When using UARTStdio functions, please see the the uartstdio.c file to understand

how the buffers work, whether or not FIFOs are enabled, and especially notice that there
is a UART interrupt handler provided there that works differently than the one we're using
in this example. The two function calls we used here seem to work o.k. but other
functions may not work as documented unless you define the proper symbols, e.g.

UART_BUFFERED, and provide the proper interrupt vector

25. Save your work. Your code should look like this.

http://ascii-table.com/

Lab 12

12 - 16 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - UART

#include "inc/hw_ints.h"
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/gpio.h"
#include "driverlib/interrupt.h"
#include "driverlib/pin_map.h"
#include "driverlib/sysctl.h"
#include "driverlib/uart.h"
#include "utils/uartstdio.h"

void UARTIntHandler(void)
{
 unsigned long ulStatus;
 unsigned char received_character;

 ulStatus = UARTIntStatus(UART0_BASE, true); //get interrupt status

 UARTIntClear(UART0_BASE, ulStatus); //clear the asserted interrupts

 while(UARTCharsAvail(UART0_BASE)) //loop while there are characters in the receive FIFO
 {
 received_character = UARTCharGet(UART0_BASE);
 UARTCharPutNonBlocking(UART0_BASE, received_character); //echo character
 if (received_character == 13) UARTCharPutNonBlocking(UART0_BASE, 10); //if CR received,
issue LF as well

 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, GPIO_PIN_2); //blink LED
 SysCtlDelay(SysCtlClockGet() / (1000 * 3)); //delay ~1 msec
 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, 0); //turn off LED
 }
}

int main(void) {

 SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN | SYSCTL_XTAL_16MHZ);

 SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);

 GPIOPinConfigure(GPIO_PA0_U0RX);
 GPIOPinConfigure(GPIO_PA1_U0TX);
 GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);

 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF); //enable GPIO port for LED
 GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_2); //enable pin for LED PF2

 UARTConfigSetExpClk(UART0_BASE, SysCtlClockGet(), 115200,
 (UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE | UART_CONFIG_PAR_NONE));

 UARTFIFOLevelSet(UART0_BASE, UART_FIFO_TX4_8, UART_FIFO_RX4_8); //set FIFO level to 8 charac-
ters
 UARTFIFOEnable(UART0_BASE); //enable FIFOs

 IntMasterEnable(); //enable processor interrupts
 IntEnable(INT_UART0); //enable the UART interrupt

 UARTIntEnable(UART0_BASE, UART_INT_RX | UART_INT_RT); //enable Receiver interrupts

 UARTStdioInit(0); //tells uartstdio functions to use UART0
 UARTprintf("\033[2J\033[HEnter Text: "); // erase screen, put cursor at home position (0,0),
prompt

 while (1) //let interrupt handler do the UART echo function
 {
// if (UARTCharsAvail(UART0_BASE)) UARTCharPut(UART0_BASE, UARTCharGet(UART0_BASE));
 }

}

 Lab 12

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - UART 12 - 17

26. Before we can compile/build this example, we need to add the uartstdio.c file from the

/utils folder into our project. Click on Project Add files…. Then navigate to
c:\StellarisWare\utils and select uartstdio.c. Then click Open.

 When you are asked how to import the file, make the selections below and click OK.

Lab 12

12 - 18 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - UART

27. You can create folders within your project to organize the added files and make things easier
to understand. Right-click on Lab12 and select New Folder. Name the folder utils and click
Finish. You can then drag uartstdio.c to the utils folder in your Project Explorer.

28. Click the Debug button to build and download your program to the LM4F120H5QR memory.

29. If you’ve closed it, open Hyperterminal or puTTY, and set it up as before.

30. Click the Resume button. You should now see the prompt to enter some text at the top left
corner of the terminal window. Type some characters and you should see the characters
echoed into the terminal window. When you press the “Enter” key (carriage return), you
should now see the line feed character issues as well.

31. At this point you may be wondering why you don’t see any effects of turning on the FIFOs. It
appears that the characters are still being received and transmitted one at a time. In fact,
we’re still getting RT (receiver timeout) interrupts because we’re just entering characters from
the terminal very slowly, compared to a continuous stream of characters. If you want to
experiment with the FIFO, you could try a couple of additional things. First, don’t enable RT
interrupts, only enable RX interrupts. If you have the FIFO level set to 8 characters as we did
in our code, you will need to enter 8 characters before they are all echoed back to you. The
interrupt occurs after at least 8 characters have been received in the FIFO. You could also
experiment with setting the FIFO levels to 2 characters, 4 characters, 12 characters, 14
characters. Have fun.

32. Close puTTY or HyperTerminal. Click the Terminate button to return to the CCS Edit
perspective. Close the Lab12 project and minimize Code Composer Studio.

 You’re done.

